×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2303.06125v4 Announce Type: replace
Abstract: Recent photometric observations of massive stars have identified a low-frequency power excess which appears as stochastic low-frequency variability in light curve observations. We present the oscillation properties of high resolution hydrodynamic simulations of a 25 $\mathrm{M}_\odot$ star performed with the PPMStar code. The model star has a convective core mass of $\approx\, 12\, \mathrm{M}_\odot$ and approximately half of the envelope simulated. From this simulation, we extract light curves from several directions, average them over each hemisphere, and process them as if they were real photometric observations. We show how core convection excites waves with a similar frequency as the convective time scale in addition to significant power across a forest of low and high angular degree $l$ modes. We find that the coherence of these modes is relatively low as a result of their stochastic excitation by core convection, with lifetimes on the order of 10s of days. Thanks to the still significant power at higher $l$ and this relatively low coherence, we find that integrating over a hemisphere produces a power spectrum that still contains measurable power up to the Brunt--V\"ais\"al\"a frequency. These power spectra extracted from the stable envelope are qualitatively similar to observations, with same order of magnitude yet lower characteristic frequency. This work further shows the potential of long-duration, high-resolution hydrodynamic simulations for connecting asteroseismic observations to the structure and dynamics of core convection and the convective boundary.

Click here to read this post out
ID: 829717; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 1, 2024, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 11
CC:
No creative common's license
Comments: