×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2308.08540v3 Announce Type: replace
Abstract: The identification of sources driving cosmic reionization, a major phase transition from neutral Hydrogen to ionized plasma around 600-800 Myr after the Big Bang (Dayal et al. 2018, Mason et al. 2019, Robertson et al. 2022), has been a matter of intense debate (Robertson et al. 2022). Some models suggest that high ionizing emissivity and escape fractions ($f_{\rm esc}$) from quasars support their role in driving cosmic reionization (Madau & Haardt 2015, Mitra et al. 2018). Others propose that the high $f_{\rm esc}$ values from bright galaxies generates sufficient ionizing radiation to drive this process (Naidu et al. 2020). Finally, a few studies suggest that the number density of faint galaxies, when combined with a stellar-mass-dependent model of ionizing efficiency and $f_{\rm esc}$, can effectively dominate cosmic reionization (Finkelstein et al. 2019, Dayal et al. 2020). However, so far, low-mass galaxies have eluded comprehensive spectroscopic studies owing to their extreme faintness. Here we report an analysis of eight ultra-faint galaxies (in a very small field) during the epoch of reionization with absolute magnitudes between $M_{\rm UV}$ $\sim -17$ to $-15$ mag (down to 0.005 $L^{\star}$. We find that faint galaxies during the Universe's first billion years produce ionizing photons with log($\xi_{\mathrm{ion}}$/ Hz erg$^{-1}$) =$25.80\pm 0.14$, a factor of 4 higher than commonly assumed values (Robertson et al. 2015). If this field is representative of the large scale distribution of faint galaxies, the rate of ionizing photons exceeds that needed for reionization, even for escape fractions of order five per cent.

Click here to read this post out
ID: 829719; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 1, 2024, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 11
CC:
No creative common's license
Comments: