×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

Podocytes, specialized epithelial cells that envelop the glomerular
capillaries, play a pivotal role in maintaining renal health. The current
description and quantification of features on pathology slides are limited,
prompting the need for innovative solutions to comprehensively assess diverse
phenotypic attributes within Whole Slide Images (WSIs). In particular,
understanding the morphological characteristics of podocytes, terminally
differentiated glomerular epithelial cells, is crucial for studying glomerular
injury. This paper introduces the Spatial Pathomics Toolkit (SPT) and applies
it to podocyte pathomics. The SPT consists of three main components: (1)
instance object segmentation, enabling precise identification of podocyte
nuclei; (2) pathomics feature generation, extracting a comprehensive array of
quantitative features from the identified nuclei; and (3) robust statistical
analyses, facilitating a comprehensive exploration of spatial relationships
between morphological and spatial transcriptomics features.The SPT successfully
extracted and analyzed morphological and textural features from podocyte
nuclei, revealing a multitude of podocyte morphomic features through
statistical analysis. Additionally, we demonstrated the SPT's ability to
unravel spatial information inherent to podocyte distribution, shedding light
on spatial patterns associated with glomerular injury. By disseminating the
SPT, our goal is to provide the research community with a powerful and
user-friendly resource that advances cellular spatial pathomics in renal
pathology. The implementation and its complete source code of the toolkit are
made openly accessible at https://github.com/hrlblab/spatial_pathomics.

Click here to read this post out
ID: 333440; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: Aug. 15, 2023, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: