×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.11876v1 Announce Type: new
Abstract: Online learning has soared in popularity in the educational landscape of COVID-19 and carries the benefits of increased flexibility and access to far-away training resources. However, it also restricts communication between peers and teachers, limits physical interactions and confines learning to the computer screen and keyboard. In this project, we designed a novel way to engage students in collaborative online learning by using haptic-enabled tangible robots, Cellulo. We built a library which connects two robots remotely for a learning activity based around the structure of a biological cell. To discover how separate modes of haptic feedback might differentially affect collaboration, two modes of haptic force-feedback were implemented (haptic co-location and haptic consensus). With a case study, we found that the haptic co-location mode seemed to stimulate collectivist behaviour to a greater extent than the haptic consensus mode, which was associated with individualism and less interaction. While the haptic co-location mode seemed to encourage information pooling, participants using the haptic consensus mode tended to focus more on technical co-ordination. This work introduces a novel system that can provide interesting insights on how to integrate haptic feedback into collaborative remote learning activities in future.

Click here to read this post out
ID: 812354; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: