×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

In this paper, we propose an iterative framework, which consists of two
phases: a generation phase and a training phase, to generate realistic training
data and yield a supervised homography network. In the generation phase, given
an unlabeled image pair, we utilize the pre-estimated dominant plane masks and
homography of the pair, along with another sampled homography that serves as
ground truth to generate a new labeled training pair with realistic motion. In
the training phase, the generated data is used to train the supervised
homography network, in which the training data is refined via a content
consistency module and a quality assessment module. Once an iteration is
finished, the trained network is used in the next data generation phase to
update the pre-estimated homography. Through such an iterative strategy, the
quality of the dataset and the performance of the network can be gradually and
simultaneously improved. Experimental results show that our method achieves
state-of-the-art performance and existing supervised methods can be also
improved based on the generated dataset. Code and dataset are available at
https://github.com/megvii-research/RealSH.

Click here to read this post out
ID: 301644; Unique Viewers: 0
Voters: 0
Latest Change: July 31, 2023, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Comments:
Newcom
<0:100>