×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

Graph Neural Networks (GNNs) have proven to be effective in processing and
learning from graph-structured data. However, previous works mainly focused on
understanding single graph inputs while many real-world applications require
pair-wise analysis for graph-structured data (e.g., scene graph matching, code
searching, and drug-drug interaction prediction). To this end, recent works
have shifted their focus to learning the interaction between pairs of graphs.
Despite their improved performance, these works were still limited in that the
interactions were considered at the node-level, resulting in high computational
costs and suboptimal performance. To address this issue, we propose a novel and
efficient graph-level approach for extracting interaction representations using
co-attention in graph pooling. Our method, Co-Attention Graph Pooling
(CAGPool), exhibits competitive performance relative to existing methods in
both classification and regression tasks using real-world datasets, while
maintaining lower computational complexity.

Click here to read this post out
ID: 301655; Unique Viewers: 0
Voters: 0
Latest Change: July 31, 2023, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Comments:
Newcom
<0:100>