×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

With the rapid development and large-scale popularity of program software,
modern society increasingly relies on software systems. However, the problems
exposed by software have also come to the fore. Software defect has become an
important factor troubling developers. In this context, Automated Program
Repair (APR) techniques have emerged, aiming to automatically fix software
defect problems and reduce manual debugging work. In particular, benefiting
from the advances in deep learning, numerous learning-based APR techniques have
emerged in recent years, which also bring new opportunities for APR research.
To give researchers a quick overview of APR techniques' complete development
and future opportunities, we revisit the evolution of APR techniques and
discuss in depth the latest advances in APR research. In this paper, the
development of APR techniques is introduced in terms of four different patch
generation schemes: search-based, constraint-based, template-based, and
learning-based. Moreover, we propose a uniform set of criteria to review and
compare each APR tool, summarize the advantages and disadvantages of APR
techniques, and discuss the current state of APR development. Furthermore, we
introduce the research on the related technical areas of APR that have also
provided a strong motivation to advance APR development. Finally, we analyze
current challenges and future directions, especially highlighting the critical
opportunities that large language models bring to APR research.

Click here to read this post out
ID: 129957; Unique Viewers: 0
Voters: 0
Latest Change: May 16, 2023, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Comments:
Newcom
<0:100>