×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

Approaching limitations of digital computing technologies have spurred
research in neuromorphic and other unconventional approaches to computing. Here
we argue that if we want to systematically engineer computing systems that are
based on unconventional physical effects, we need guidance from a formal theory
that is different from the symbolic-algorithmic theory of today's computer
science textbooks. We propose a general strategy for developing such a theory,
and within that general view, a specific approach that we call "fluent
computing". In contrast to Turing, who modeled computing processes from a
top-down perspective as symbolic reasoning, we adopt the scientific paradigm of
physics and model physical computing systems bottom-up by formalizing what can
ultimately be measured in any physical substrate. This leads to an
understanding of computing as the structuring of processes, while classical
models of computing systems describe the processing of structures.

Click here to read this post out
ID: 301666; Unique Viewers: 0
Voters: 0
Latest Change: July 31, 2023, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Comments:
Newcom
<0:100>