×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

Satellite systems face a significant challenge in effectively utilizing
limited communication resources to meet the demands of ground network traffic,
characterized by asymmetrical spatial distribution and time-varying
characteristics. Moreover, the coverage range and signal transmission distance
of low Earth orbit (LEO) satellites are restricted by notable propagation
attenuation, molecular absorption, and space losses in sub-terahertz (THz)
frequencies. This paper introduces a novel approach to maximize LEO satellite
coverage by leveraging reconfigurable intelligent surfaces (RISs) within 6G
sub-THz networks. The optimization objectives encompass enhancing the
end-to-end data rate, optimizing satellite-remote user equipment (RUE)
associations, data packet routing within satellite constellations, RIS phase
shift, and ground base station (GBS) transmit power (i.e., active beamforming).
The formulated joint optimization problem poses significant challenges owing to
its time-varying environment, non-convex characteristics, and NP-hard
complexity. To address these challenges, we propose a block coordinate descent
(BCD) algorithm that integrates balanced K-means clustering, multi-agent
proximal policy optimization (MAPPO) deep reinforcement learning (DRL), and
whale optimization (WOA) techniques. The performance of the proposed approach
is demonstrated through comprehensive simulation results, exhibiting its
superiority over existing baseline methods in the literature.

Click here to read this post out
ID: 301700; Unique Viewers: 0
Voters: 0
Latest Change: July 31, 2023, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Comments:
Newcom
<0:100>