×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

As LIGO-Virgo-KAGRA enters its fourth observing run, a new opportunity to
search for electromagnetic counterparts of compact object mergers will also
begin. The light curves and spectra from the first "kilonova" associated with a
binary neutron star binary (NSM) suggests that these sites are hosts of the
rapid neutron capture ("$r$") process. However, it is unknown just how robust
elemental production can be in mergers. Identifying signposts of the production
of particular nuclei is critical for fully understanding merger-driven
heavy-element synthesis. In this study, we investigate the properties of very
neutron rich nuclei for which superheavy elements ($Z\geq 104$) can be produced
in NSMs and whether they can similarly imprint a unique signature on kilonova
light-curve evolution. A superheavy-element signature in kilonovae represents a
route to establishing a lower limit on heavy-element production in NSMs as well
as possibly being the first evidence of superheavy element synthesis in nature.
Favorable NSMs conditions yield a mass fraction of superheavy elements is
$X_{Z\geq 104}\approx 3\times 10^{-2}$ at 7.5 hours post-merger. With this mass
fraction of superheavy elements, we find that the component of kilonova light
curves possibly containing superheavy elements may appear similar to those
arising from lanthanide-poor ejecta. Therefore, photometric characterizations
of superheavy-element rich kilonova may possibly misidentify them as
lanthanide-poor events.

Click here to read this post out
ID: 176081; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: June 5, 2023, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: