×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

Non-Terrestrial Networks (NTN) are expected to be a critical component of 6th
Generation (6G) networks, providing ubiquitous, continuous, and scalable
services. Satellites emerge as the primary enabler for NTN, leveraging their
extensive coverage, stable orbits, scalability, and adherence to international
regulations. However, satellite-based NTN presents unique challenges, including
long propagation delay, high Doppler shift, frequent handovers, spectrum
sharing complexities, and intricate beam and resource allocation, among others.
The integration of NTNs into existing terrestrial networks in 6G introduces a
range of novel challenges, including task offloading, network routing, network
slicing, and many more. To tackle all these obstacles, this paper proposes
Artificial Intelligence (AI) as a promising solution, harnessing its ability to
capture intricate correlations among diverse network parameters. We begin by
providing a comprehensive background on NTN and AI, highlighting the potential
of AI techniques in addressing various NTN challenges. Next, we present an
overview of existing works, emphasizing AI as an enabling tool for
satellite-based NTN, and explore potential research directions. Furthermore, we
discuss ongoing research efforts that aim to enable AI in satellite-based NTN
through software-defined implementations, while also discussing the associated
challenges. Finally, we conclude by providing insights and recommendations for
enabling AI-driven satellite-based NTN in future 6G networks.

Click here to read this post out
ID: 193165; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: June 12, 2023, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 12
CC:
No creative common's license
Comments: