×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

In this paper, we explore the potential of Vision-Language Models (VLMs),
specifically CLIP, in predicting visual object relationships, which involves
interpreting visual features from images into language-based relations. Current
state-of-the-art methods use complex graphical models that utilize language
cues and visual features to address this challenge. We hypothesize that the
strong language priors in CLIP embeddings can simplify these graphical models
paving for a simpler approach. We adopt the UVTransE relation prediction
framework, which learns the relation as a translational embedding with subject,
object, and union box embeddings from a scene. We systematically explore the
design of CLIP-based subject, object, and union-box representations within the
UVTransE framework and propose CREPE (CLIP Representation Enhanced Predicate
Estimation). CREPE utilizes text-based representations for all three bounding
boxes and introduces a novel contrastive training strategy to automatically
infer the text prompt for union-box. Our approach achieves state-of-the-art
performance in predicate estimation, mR@5 27.79, and mR@20 31.95 on the Visual
Genome benchmark, achieving a 15.3\% gain in performance over recent
state-of-the-art at mR@20. This work demonstrates CLIP's effectiveness in
object relation prediction and encourages further research on VLMs in this
challenging domain.

Click here to read this post out
ID: 277268; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: July 20, 2023, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 11
CC:
No creative common's license
Comments: