×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

There is a significant need for principled uncertainty reasoning in machine
learning systems as they are increasingly deployed in safety-critical domains.
A new approach with uncertainty-aware regression-based neural networks (NNs),
based on learning evidential distributions for aleatoric and epistemic
uncertainties, shows promise over traditional deterministic methods and typical
Bayesian NNs, notably with the capabilities to disentangle aleatoric and
epistemic uncertainties. Despite some empirical success of Deep Evidential
Regression (DER), there are important gaps in the mathematical foundation that
raise the question of why the proposed technique seemingly works. We detail the
theoretical shortcomings and analyze the performance on synthetic and
real-world data sets, showing that Deep Evidential Regression is a heuristic
rather than an exact uncertainty quantification. We go on to discuss
corrections and redefinitions of how aleatoric and epistemic uncertainties
should be extracted from NNs.

Click here to read this post out
ID: 283949; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: July 23, 2023, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: