×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

Motivated by the challenge of sampling Gibbs measures with nonconvex
potentials, we study a continuum birth-death dynamics. We improve results in
previous works [51,57] and provide weaker hypotheses under which the
probability density of the birth-death governed by Kullback-Leibler divergence
or by $\chi^2$ divergence converge exponentially fast to the Gibbs equilibrium
measure, with a universal rate that is independent of the potential barrier. To
build a practical numerical sampler based on the pure birth-death dynamics, we
consider an interacting particle system, which is inspired by the gradient flow
structure and the classical Fokker-Planck equation and relies on kernel-based
approximations of the measure. Using the technique of $\Gamma$-convergence of
gradient flows, we show that on the torus, smooth and bounded positive
solutions of the kernelized dynamics converge on finite time intervals, to the
pure birth-death dynamics as the kernel bandwidth shrinks to zero. Moreover we
provide quantitative estimates on the bias of minimizers of the energy
corresponding to the kernelized dynamics. Finally we prove the long-time
asymptotic results on the convergence of the asymptotic states of the
kernelized dynamics towards the Gibbs measure.

Click here to read this post out
ID: 336747; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: Aug. 16, 2023, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 10
CC:
No creative common's license
Comments: