×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

This report surveys advances in deep learning-based modeling techniques that
address four different 3D indoor scene analysis tasks, as well as synthesis of
3D indoor scenes. We describe different kinds of representations for indoor
scenes, various indoor scene datasets available for research in the
aforementioned areas, and discuss notable works employing machine learning
models for such scene modeling tasks based on these representations.
Specifically, we focus on the analysis and synthesis of 3D indoor scenes. With
respect to analysis, we focus on four basic scene understanding tasks -- 3D
object detection, 3D scene segmentation, 3D scene reconstruction and 3D scene
similarity. And for synthesis, we mainly discuss neural scene synthesis works,
though also highlighting model-driven methods that allow for human-centric,
progressive scene synthesis. We identify the challenges involved in modeling
scenes for these tasks and the kind of machinery that needs to be developed to
adapt to the data representation, and the task setting in general. For each of
these tasks, we provide a comprehensive summary of the state-of-the-art works
across different axes such as the choice of data representation, backbone,
evaluation metric, input, output, etc., providing an organized review of the
literature. Towards the end, we discuss some interesting research directions
that have the potential to make a direct impact on the way users interact and
engage with these virtual scene models, making them an integral part of the
metaverse.

Click here to read this post out
ID: 338226; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: Aug. 22, 2023, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 11
CC:
No creative common's license
Comments: