×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

Retrieving images transmitted through multi-mode fibers is of growing
interest, thanks to their ability to confine and transport light efficiently in
a compact system. Here, we demonstrate machine-learning-based decoding of
large-scale digital images (pages), maximizing page capacity for optical
storage applications. Using a millimeter-sized square cross-section waveguide,
we image an 8-bit spatial light modulator, presenting data as a matrix of
symbols. Normally, decoders will incur a prohibitive O(n^2) computational
scaling to decode n symbols in spatially scrambled data. However, by combining
a digital twin of the setup with a U-Net, we can retrieve up to 66 kB using
efficient convolutional operations only. We compare trainable ray-tracing-based
with eigenmode-based twins and show the former to be superior thanks to its
ability to overcome the simulation-to-experiment gap by adjusting to optical
imperfections. We train the pipeline end-to-end using a differentiable
mutual-information estimator based on the von-Mises distribution, generally
applicable to phase-coding channels.

Click here to read this post out
ID: 350870; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: Aug. 26, 2023, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 13
CC:
No creative common's license
Comments: