×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

We demonstrate a compact, cost-effective snapshot spectral imaging system
named Aperture Diffraction Imaging Spectrometer (ADIS), which consists only of
an imaging lens with an ultra-thin orthogonal aperture mask and a mosaic filter
sensor, requiring no additional physical footprint compared to common RGB
cameras. Then we introduce a new optical design that each point in the object
space is multiplexed to discrete encoding locations on the mosaic filter sensor
by diffraction-based spatial-spectral projection engineering generated from the
orthogonal mask. The orthogonal projection is uniformly accepted to obtain a
weakly calibration-dependent data form to enhance modulation robustness.
Meanwhile, the Cascade Shift-Shuffle Spectral Transformer (CSST) with strong
perception of the diffraction degeneration is designed to solve a
sparsity-constrained inverse problem, realizing the volume reconstruction from
2D measurements with Large amount of aliasing. Our system is evaluated by
elaborating the imaging optical theory and reconstruction algorithm with
demonstrating the experimental imaging under a single exposure. Ultimately, we
achieve the sub-super-pixel spatial resolution and high spectral resolution
imaging. The code will be available at: https://github.com/Krito-ex/CSST.

Click here to read this post out
ID: 439329; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: Oct. 1, 2023, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 11
CC:
No creative common's license
Comments: