×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

We investigate the CLIP image encoder by analyzing how individual model
components affect the final representation. We decompose the image
representation as a sum across individual image patches, model layers, and
attention heads, and use CLIP's text representation to interpret the summands.
Interpreting the attention heads, we characterize each head's role by
automatically finding text representations that span its output space, which
reveals property-specific roles for many heads (e.g. location or shape). Next,
interpreting the image patches, we uncover an emergent spatial localization
within CLIP. Finally, we use this understanding to remove spurious features
from CLIP and to create a strong zero-shot image segmenter. Our results
indicate that a scalable understanding of transformer models is attainable and
can be used to repair and improve models.

Click here to read this post out
ID: 463708; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: Oct. 11, 2023, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 10
CC:
No creative common's license
Comments: