×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

Due to inappropriate sample selection and limited training data, a
distribution shift often exists between the training and test sets. This shift
can adversely affect the test performance of Graph Neural Networks (GNNs).
Existing approaches mitigate this issue by either enhancing the robustness of
GNNs to distribution shift or reducing the shift itself. However, both
approaches necessitate retraining the model, which becomes unfeasible when the
model structure and parameters are inaccessible. To address this challenge, we
propose FR-GNN, a general framework for GNNs to conduct feature reconstruction.
FRGNN constructs a mapping relationship between the output and input of a
well-trained GNN to obtain class representative embeddings and then uses these
embeddings to reconstruct the features of labeled nodes. These reconstructed
features are then incorporated into the message passing mechanism of GNNs to
influence the predictions of unlabeled nodes at test time. Notably, the
reconstructed node features can be directly utilized for testing the
well-trained model, effectively reducing the distribution shift and leading to
improved test performance. This remarkable achievement is attained without any
modifications to the model structure or parameters. We provide theoretical
guarantees for the effectiveness of our framework. Furthermore, we conduct
comprehensive experiments on various public datasets. The experimental results
demonstrate the superior performance of FRGNN in comparison to multiple
categories of baseline methods.

Click here to read this post out
ID: 475563; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: Oct. 16, 2023, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 11
CC:
No creative common's license
Comments: