×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

Formal methods refer to rigorous, mathematical approaches to system
development and have played a key role in establishing the correctness of
safety-critical systems. The main building blocks of formal methods are models
and specifications, which are analogous to behaviors and requirements in system
design and give us the means to verify and synthesize system behaviors with
formal guarantees.


This monograph provides a survey of the current state of the art on
applications of formal methods in the autonomous systems domain. We consider
correct-by-construction synthesis under various formulations, including closed
systems, reactive, and probabilistic settings. Beyond synthesizing systems in
known environments, we address the concept of uncertainty and bound the
behavior of systems that employ learning using formal methods. Further, we
examine the synthesis of systems with monitoring, a mitigation technique for
ensuring that once a system deviates from expected behavior, it knows a way of
returning to normalcy. We also show how to overcome some limitations of formal
methods themselves with learning. We conclude with future directions for formal
methods in reinforcement learning, uncertainty, privacy, explainability of
formal methods, and regulation and certification.

Click here to read this post out
ID: 524377; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: Nov. 5, 2023, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: