×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

Stars formed with initial mass over 50 Msun are very rare today, but they are
thought to be more common in the early universe. The fates of those early,
metal-poor, massive stars are highly uncertain. Most are expected to directly
collapse to black holes, while some may explode as a result of rotationally
powered engines or the pair-creation instability. We present the chemical
abundances of J0931+0038, a nearby low-mass star identified in early followup
of SDSS-V Milky Way Mapper, which preserves the signature of unusual
nucleosynthesis from a massive star in the early universe. J0931+0038 has
relatively high metallicity ([Fe/H] = -1.76 +/- 0.13) but an extreme odd-even
abundance pattern, with some of the lowest known abundance ratios of [N/Fe],
[Na/Fe], [K/Fe], [Sc/Fe], and [Ba/Fe]. The implication is that a majority of
its metals originated in a single extremely metal-poor nucleosynthetic source.
An extensive search through nucleosynthesis predictions finds a clear
preference for progenitors with initial mass > 50 Msun, making J0931+0038 one
of the first observational constraints on nucleosynthesis in this mass range.
However the full abundance pattern is not matched by any models in the
literature. J0931+0038 thus presents a challenge for the next generation of
nucleosynthesis models and motivates study of high-mass progenitor stars
impacted by convection, rotation, jets, and/or binary companions. Though rare,
more examples of unusual early nucleosynthesis in metal-poor stars should be
found in upcoming large spectroscopic surveys.

Click here to read this post out
ID: 660783; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: Jan. 8, 2024, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: