×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

Few-shot instance segmentation extends the few-shot learning paradigm to the
instance segmentation task, which tries to segment instance objects from a
query image with a few annotated examples of novel categories. Conventional
approaches have attempted to address the task via prototype learning, known as
point estimation. However, this mechanism depends on prototypes (\eg mean of
$K-$shot) for prediction, leading to performance instability. To overcome the
disadvantage of the point estimation mechanism, we propose a novel approach,
dubbed MaskDiff, which models the underlying conditional distribution of a
binary mask, which is conditioned on an object region and $K-$shot information.
Inspired by augmentation approaches that perturb data with Gaussian noise for
populating low data density regions, we model the mask distribution with a
diffusion probabilistic model. We also propose to utilize classifier-free
guided mask sampling to integrate category information into the binary mask
generation process. Without bells and whistles, our proposed method
consistently outperforms state-of-the-art methods on both base and novel
classes of the COCO dataset while simultaneously being more stable than
existing methods. The source code is available at:
https://github.com/minhquanlecs/MaskDiff.

Click here to read this post out
ID: 692063; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: Jan. 23, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 11
CC:
No creative common's license
Comments: