×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2311.01355v2 Announce Type: replace
Abstract: Aerospace design is increasingly incorporating Design Under Uncertainty based approaches to lead to more robust and reliable optimal designs. These approaches require dependable estimates of uncertainty in simulations for their success. The key contributor of predictive uncertainty in Computational Fluid Dynamics (CFD) simulations of turbulent flows are the structural limitations of Reynolds-averaged Navier-Stokes models, termed model-form uncertainty. Currently, the common procedure to estimate turbulence model-form uncertainty is the Eigenspace Perturbation Framework (EPF), involving perturbations to the modeled Reynolds stress tensor within physical limits. The EPF has been applied with success in design and analysis tasks in numerous prior works from the industry and academia. Owing to its rapid success and adoption in several commercial and open-source CFD solvers, in depth Verification and Validation of the EPF is critical. In this work, we show that under certain conditions, the perturbations in the EPF can lead to Reynolds stress dynamics that are not physically realizable. This analysis enables us to propose a set of necessary physics-based constraints, leading to a realizable EPF. We apply this constrained procedure to the illustrative test case of a converging-diverging channel, and we demonstrate that these constraints limit physically implausible dynamics of the Reynolds stress tensor, while enhancing the accuracy and stability of the uncertainty estimation procedure.

Click here to read this post out
ID: 757077; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: Feb. 28, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 11
CC:
No creative common's license
Comments: