×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2311.07644v3 Announce Type: replace-cross
Abstract: A new mechanism for chiral symmetry restoration at extreme high magnetic fields is proposed in the context of the Magnetic Catalysis scenario in Weyl Semimetals. Contrary to previous proposals, here we show that, at very large magnetic fields, the transverse velocity of the axion field, the phase mode of the chiral condensate $\langle \bar{\Psi}\Psi\rangle$, becomes effectively one-dimensional and its fluctuations destroy a possible nonzero value of this fermionic condensate. We also show that, despite of the $U(1)$ chiral symmetry not being broken at extremely large magnetic fields, the spectrum of the system is comprised by a well defined gapless bosonic excitation, connected to the axion mode, and a correlated insulating fermionic liquid that is neutral to $U(1)$ chiral transformations. When the theory is supplemented with the inclusion of dynamical electromagnetic fields, the chiral symmetry is broken again, and the conventional scenario of magnetic catalysis can be recovered.

Click here to read this post out
ID: 761024; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 1, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 10
CC:
No creative common's license
Comments: