×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.02393v1 Announce Type: new
Abstract: The structure and dynamics of the central bar of the Milky Way are still under debate whilst being fundamental ingredients for the evolution of our Galaxy. The recent Gaia DR3 offers an unprecedented detailed view of the 6D phase-space of the MW. We aim to characterise the dynamical moving groups across the MW disc, and use their large-scale distribution to help constrain the properties of the Galactic bar. We used wavelet transforms of the azimuthal velocity ($V_\phi$) distribution in bins of radial velocity to robustly detect the kinematic substructure in the Gaia DR3 catalogue. We then connected these structures across the disc to measure the azimuthal ($\phi$) and radial ($R$) gradients of the moving groups. We simulated thousands of perturbed distribution functions using Backwards Integration of feasible Galaxy models that include a bar, to compare them with the data and to explore and quantify the degeneracies. The radial gradient of the Hercules moving group ($\partial V_\phi/\partial R$ = 28.1$\pm$2.8 km$\,$s$^{-1}\,$kpc$^{-1}$) cannot be reproduced by our simple models of the Galaxy which show much larger slopes both for a fast and a slow bar. This suggests the need for more complex dynamics (e.g. spiral arms, a slowing bar, external perturbations, etc.). We measure an azimuthal gradient for Hercules of $\partial V_\phi/\partial \phi$ = -0.63$\pm$0.13$\,$km$\,$s$^{-1}$deg$^{-1}$ and find that it is compatible with both the slow and fast bar models. Our analysis points out that using this type of analysis at least two moving groups are needed to start breaking the degeneracies. We conclude that it is not sufficient for a model to replicate the local velocity distribution; it must also capture its larger-scale variations. The accurate quantification of the gradients, especially in the azimuthal direction, will be key for the understanding of the dynamics governing the disc. (ABR)

Click here to read this post out
ID: 764764; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 6, 2024, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 13
CC:
No creative common's license
Comments: