×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2210.09986v2 Announce Type: replace-cross
Abstract: Genome assembly, the process of reconstructing a long genetic sequence by aligning and merging short fragments, or reads, is known to be NP-hard, either as a version of the shortest common superstring problem or in a Hamiltonian-cycle formulation. That is, the computing time is believed to grow exponentially with the the problem size in the worst case. Despite this fact, high-throughput technologies and modern algorithms currently allow bioinformaticians to handle datasets of billions of reads. Using methods from statistical mechanics, we address this conundrum by demonstrating the existence of a phase transition in the computational complexity of the problem and showing that practical instances always fall in the 'easy' phase (solvable by polynomial-time algorithms). In addition, we propose a Markov-chain Monte Carlo method that outperforms common deterministic algorithms in the hard regime.

Click here to read this post out
ID: 776613; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 12, 2024, 7:34 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 11
CC:
No creative common's license
Comments: