×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.16022v1 Announce Type: cross
Abstract: We revisit the properties of total time-derivative terms as well as terms proportional to the free equation of motion (EOM) in a Schwinger-Keldysh formalism. They are relevant to the correct calculation of correlation functions of curvature perturbations in the context of inflationary Universe. We show that these two contributions to the action play different roles in the operator or the path-integral formalism, but they give the same correlation functions as each other. As a concrete example, we confirm that the Maldacena's consistency relations for the three-point correlation function in the slow-roll inflationary scenario driven by a minimally coupled canonical scalar field hold in both the operator and path-integral formalisms. We also give some comments on loop calculations.

Click here to read this post out
ID: 799486; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 26, 2024, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: