×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.16684v1 Announce Type: new
Abstract: As a quasi-layered ferrimagnetic material, Mn$_3$Si$_2$Te$_6$ nanoflakes exhibit magnetoresistance behaviour that is fundamentally different from their bulk crystal counterparts. They offer three key properties crucial for spintronics. Firstly, at least 10^6 times faster response comparing to that exhibited by bulk crystals has been observed in current-controlled resistance and magnetoresistance. Secondly, ultra-low current density is required for resistance modulation (~ 5 A/cm$^2$). Thirdly, electrically gate-tunable magnetoresistance has been realized. Theoretical calculations reveal that the unique magnetoresistance behaviour in the Mn$_3$Si$_2$Te$_6$ nanoflakes arises from a magnetic field induced band gap shift across the Fermi level. The rapid current induced resistance variation is attributed to spin-orbit torque, an intrinsically ultra-fast process (~nanoseconds). This study suggests promising avenues for spintronic applications. In addition, it highlights Mn$_3$Si$_2$Te$_6$ nanoflakes as a suitable platform for investigating the intriguing physics underlying chiral orbital moments, magnetic field induced band variation and spin torque.

Click here to read this post out
ID: 799610; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 26, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: