×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.16001v1 Announce Type: new
Abstract: For large software applications, running the whole test suite after each code change is time- and resource-intensive. Regression test selection techniques aim at reducing test execution time by selecting only the tests that are affected by code changes. However, existing techniques select test entities at coarse granularity levels such as test class, which causes imprecise test selection and executing unaffected tests. We propose a novel approach that increases the selection precision by analyzing test code at statement level and treating test assertions as the unit for selection. We implement our fine-grained test selection approach in a tool called SELERTION and evaluate it by comparing against two state-of-the-art test selection techniques using 11 open-source subjects. Our results show that SELERTION increases selection precision for all the subjects. Our test selection reduces, on average, 63% of the overall test time, making regression testing up to 23% faster than the other techniques. Our results also indicate that subjects with longer test execution time benefit more by our fine-grained selection technique.

Click here to read this post out
ID: 800026; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 26, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 15
CC:
No creative common's license
Comments: