×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.16170v1 Announce Type: new
Abstract: This study introduces a novel approach utilizing Gaussian process model predictive control (MPC) to stabilize the output voltage of a polymer electrolyte fuel cell (PEFC) system by simultaneously regulating hydrogen and airflow rates. Two Gaussian process models are developed to capture PEFC dynamics, taking into account constraints including hydrogen pressure and input change rates, thereby aiding in mitigating errors inherent to PEFC predictive control. The dynamic performance of the physical model and Gaussian process MPC in constraint handling and system inputs is compared and analyzed. Simulation outcomes demonstrate that the proposed Gaussian process MPC effectively maintains the voltage at the target 48 V while adhering to safety constraints, even amidst workload disturbances ranging from 110-120 A. In comparison to traditional MPC using detailed system models, Gaussian process MPC exhibits a 43\% higher overshoot and 25\% slower response time. Nonetheless, it offers the advantage of not requiring the underlying true system model and needing less system information.

Click here to read this post out
ID: 800116; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 26, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: