×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.16307v1 Announce Type: new
Abstract: This paper addresses the particularities in optimal control of the uranium extraction-scrubbing operation in the PUREX process. The control problem requires optimally stabilizing the system at a desired solvent saturation level, guaranteeing constraints, disturbance rejection, and adapting to set point variations. A qualified simulator named PAREX was developed by the French Alternative Energies and Atomic Energy Commission (CEA) to simulate liquid-liquid extraction operations in the PUREX process. However, since the mathematical model is complex and is described by a system of nonlinear, stiff, high-dimensional differential-algebraic equations (DAE), applying optimal control methods will lead to a large-scale nonlinear programming problem with a huge computational burden. The solution we propose in this work is to train a neural network to predict the process outputs using the measurement history. This neural network architecture, which employs the long short-term memory (LSTM), linear regression and logistic regression networks, allows reducing the number of state variables, thus reducing the complexity of the optimization problems in the control scheme. Furthermore, nonlinear model predictive control (NMPC) and moving horizon estimation (MHE) problems are developed and solved using the PSO (Particle Swarm Optimization) algorithm. Simulation results show that the proposed adaptive optimal control scheme satisfies the requirements of the control problem and provides promise for experimental testing.

Click here to read this post out
ID: 800189; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 26, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: