×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.16402v1 Announce Type: new
Abstract: The integration of various power sources, including renewables and electric vehicles, into smart grids is expanding, introducing uncertainties that can result in issues like voltage imbalances, load fluctuations, and power losses. These challenges negatively impact the reliability and stability of online scheduling in smart grids. Existing research often addresses uncertainties affecting current states but overlooks those that impact future states, such as the unpredictable charging patterns of electric vehicles. To distinguish between these, we term them static uncertainties and dynamic uncertainties, respectively. This paper introduces WDR-MPC, a novel approach that stands for two-stage Wasserstein-based Distributionally Robust (WDR) optimization within a Model Predictive Control (MPC) framework, aimed at effectively managing both types of uncertainties in smart grids. The dynamic uncertainties are first reformulated into ambiguity tubes and then the distributionally robust bounds of both dynamic and static uncertainties can be established using WDR optimization. By employing ambiguity tubes and WDR optimization, the stochastic MPC system is converted into a nominal one. Moreover, we develop a convex reformulation method to speed up WDR computation during the two-stage optimization. The distinctive contribution of this paper lies in its holistic approach to both static and dynamic uncertainties in smart grids. Comprehensive experiment results on IEEE 38-bus and 94-bus systems reveal the method's superior performance and the potential to enhance grid stability and reliability.

Click here to read this post out
ID: 800237; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 26, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: