×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.16479v1 Announce Type: new
Abstract: Recent studies show that deployed deep learning (DL) models such as those of Tensor Flow Lite (TFLite) can be easily extracted from real-world applications and devices by attackers to generate many kinds of attacks like adversarial attacks. Although securing deployed on-device DL models has gained increasing attention, no existing methods can fully prevent the aforementioned threats. Traditional software protection techniques have been widely explored, if on-device models can be implemented using pure code, such as C++, it will open the possibility of reusing existing software protection techniques. However, due to the complexity of DL models, there is no automatic method that can translate the DL models to pure code. To fill this gap, we propose a novel method, CustomDLCoder, to automatically extract the on-device model information and synthesize a customized executable program for a wide range of DL models. CustomDLCoder first parses the DL model, extracts its backend computing units, configures the computing units to a graph, and then generates customized code to implement and deploy the ML solution without explicit model representation. The synthesized program hides model information for DL deployment environments since it does not need to retain explicit model representation, preventing many attacks on the DL model. In addition, it improves ML performance because the customized code removes model parsing and preprocessing steps and only retains the data computing process. Our experimental results show that CustomDLCoder improves model security by disabling on-device model sniffing. Compared with the original on-device platform (i.e., TFLite), our method can accelerate model inference by 21.0% and 24.3% on x86-64 and ARM64 platforms, respectively. Most importantly, it can significantly reduce memory consumption by 68.8% and 36.0% on x86-64 and ARM64 platforms, respectively.

Click here to read this post out
ID: 800284; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 26, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: