×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.16798v1 Announce Type: new
Abstract: Deep learning faces significant challenges during the training of neural networks, including internal covariate shift, label shift, vanishing/exploding gradients, overfitting, and computational complexity. While conventional normalization methods, such as Batch Normalization, aim to tackle some of these issues, they often depend on assumptions that constrain their adaptability. Mixture Normalization faces computational hurdles in its pursuit of handling multiple Gaussian distributions.
This paper introduces Cluster-Based Normalization (CB-Norm) in two variants - Supervised Cluster-Based Normalization (SCB-Norm) and Unsupervised Cluster-Based Normalization (UCB-Norm) - proposing a groundbreaking one-step normalization approach. CB-Norm leverages a Gaussian mixture model to specifically address challenges related to gradient stability and learning acceleration.
For SCB-Norm, a supervised variant, the novel mechanism involves introducing predefined data partitioning, termed clusters, to normalize activations based on the assigned cluster. This cluster-driven approach creates a space that conforms to a Gaussian mixture model. On the other hand, UCB-Norm, an unsupervised counterpart, dynamically clusters neuron activations during training, adapting to task-specific challenges without relying on predefined data partitions (clusters). This dual approach ensures flexibility in addressing diverse learning scenarios.
CB-Norm innovatively uses a one-step normalization approach, where parameters of each mixture component (cluster in activation space) serve as weights for deep neural networks. This adaptive clustering process tackles both clustering and resolution of deep neural network tasks concurrently during training, signifying a notable advancement in the field.

Click here to read this post out
ID: 800426; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 26, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 10
CC:
No creative common's license
Comments: