×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2402.09282v4 Announce Type: replace
Abstract: Emerging Large Language Models (LLMs) like GPT-4 have revolutionized Natural Language Processing (NLP), showing potential in traditional tasks such as Named Entity Recognition (NER). Our study explores a three-phase training strategy that harnesses GPT-4's capabilities to enhance the BERT model's performance on NER. Initially, GPT-4 annotates a subset of the CONLL2003 and additional BBC dataset without fine-tuning. We then train BERT using a mix of original and LLM-annotated data, analyzing the efficacy of LLM annotations against traditional methods. The second phase involves comparative experiments with different training regimens, assessing the synergy between distilled and original data. We observe that sequential strategies, particularly a simple mix of training first with distilled data followed by original data, significantly boost performance. In the third phase, we investigate various data blending techniques, including sigmoid and power decay functions, to optimize the training process further. Our results indicate that a strategic mix of distilled and original data markedly elevates the NER capabilities of BERT. Our approach presents a scalable methodology that reduces manual annotation costs and increases efficiency, making it especially pertinent in resource-limited and closed-network environments. The study concludes that while the 'Simple Mix' strategy yields the best results, understanding its underlying mechanisms requires further research. Future work will also focus on refining prompt designs and enhancing annotation selection processes, aiming to extend our methodology to diverse NLP tasks.

Click here to read this post out
ID: 800978; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 26, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 14
CC:
No creative common's license
Comments: