×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.11542v2 Announce Type: replace
Abstract: Semantic communication (SemCom) aims to achieve high fidelity information delivery under low communication consumption by only guaranteeing semantic accuracy. Nevertheless, semantic communication still suffers from unexpected channel volatility and thus developing a re-transmission mechanism (e.g., hybrid automatic repeat request [HARQ]) is indispensable. In that regard, instead of discarding previously transmitted information, the incremental knowledge-based HARQ (IK-HARQ) is deemed as a more effective mechanism that could sufficiently utilize the information semantics. However, considering the possible existence of semantic ambiguity in image transmission, a simple bit-level cyclic redundancy check (CRC) might compromise the performance of IK-HARQ. Therefore, it emerges a strong incentive to revolutionize the CRC mechanism, so as to reap the benefits of both SemCom and HARQ. In this paper, built on top of swin transformer-based joint source-channel coding (JSCC) and IK-HARQ, we propose a semantic image transmission framework SC-TDA-HARQ. In particular, different from the conventional CRC, we introduce a topological data analysis (TDA)-based error detection method, which capably digs out the inner topological and geometric information of images, so as to capture semantic information and determine the necessity for re-transmission. Extensive numerical results validate the effectiveness and efficiency of the proposed SC-TDA-HARQ framework, especially under the limited bandwidth condition, and manifest the superiority of TDA-based error detection method in image transmission.

Click here to read this post out
ID: 801056; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 26, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: