×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2306.08318v2 Announce Type: replace-cross
Abstract: Implementing resource efficient energy management systems in facilities and buildings becomes increasingly important in the transformation to a sustainable society. However, selecting a suitable configuration based on multiple, typically conflicting objectives, such as cost, robustness with respect to uncertainty of grid operation, or renewable energy utilization, is a difficult multi-criteria decision making problem. The recently developed concept identification technique can facilitate a decision maker by sorting configuration options into semantically meaningful groups (concepts). In this process, the partitioning of the objectives and design parameters into different sets (called description spaces) is a very important step. In this study we focus on utilizing the concept identification technique for finding relevant and viable energy management configurations from a very large data set of Pareto-optimal solutions. The data set consists of 20000 realistic Pareto-optimal building energy management configurations generated by a many-objective evolutionary optimization of a high quality Digital Twin energy management simulator. We analyze how the choice of description spaces, i.e., the partitioning of the objectives and parameters, impacts the type of information that can be extracted. We show that the decision maker can introduce constraints and biases into that process to meet expectations and preferences. The iterative approach presented in this work allows for the generation of valuable insights into trade-offs between specific objectives, and constitutes a powerful and flexible tool to support the decision making process when designing large and complex energy management systems.

Click here to read this post out
ID: 801423; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 26, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 10
CC:
No creative common's license
Comments: