×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.15642v1 Announce Type: new
Abstract: The purpose of this work is to provide a finite dimensional approximation of the solution to a mean field optimal control problem set on the $d$-dimensional torus. The approximation is obtained by means of a Fourier-Galerkin method, the main principle of which is to convolve probability measures on the torus by the Dirichlet kernel or, equivalently, to truncate the Fourier expansion of probability measures on the torus. However, this operation has the main feature not to leave the space of probability measures invariant, which drawback is know as \textit{Gibbs}' phenomenon. In spite of this, we manage to prove that, for initial conditions in the `interior' of the space of probability measures and for sufficiently large levels of truncation, the Fourier-Galerkin method induces a new finite dimensional control problem whose trajectories take values in the space of probability measures with a finite number of Fourier coefficients. Our main result asserts that, whenever the cost functionals are smooth and convex, the distance between the optimal trajectories of the original and approximating control problems decreases at a polynomial rate as the index of truncation in the Fourier-Galerkin method tends to $\infty$. A similar result holds for the distance between the corresponding value functions. From a practical point of view, our approach provides an efficient strategy to approximate mean field control optimizers by finite dimensional parameters and opens new perspectives for the numerical analysis of mean field control problems. It may be also applied to discretize more general mean field game systems.

Click here to read this post out
ID: 801779; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 26, 2024, 7:34 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: