×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.16072v1 Announce Type: new
Abstract: High altitude platforms (HAPs)-aided terrestrial-aerial communication technology based on free-space optical (FSO) and Terahertz (THz) feeder links has been attracting notable interest recently due to its great potential in reaching a higher data rate and connectivity. Nonetheless, the presence of harsh vertical propagation environments and potential aerial eavesdroppers are two of the main challenges limiting the reliability and security of such a technology. In this work, a secrecy-enhancing scheme for HAP-aided ground-aerial communication is proposed. The considered network consists of HAP-assisted communication between a ground station and a legitimate user under the threat of an aerial and ground eavesdropper. Thus, the proposed scheme leverages (i) HAP diversity by exploiting the presence of multiple flying HAPs and (ii) the use of a hybrid FSO/THz transmission scheme to offer better resilience against eavesdropping attacks. An analytical secrecy outage probability (SOP) expression is derived for the scheme in consideration. Results manifest the notable gain in security of the proposed scheme with respect to both (i) the single-HAP and (ii) THz feeder-based benchmark ones, where the proposed scheme's SOP is decreased by four orders of magnitude using $4$ HAPs with respect to the first benchmark scheme, while a $5$-dB secrecy gain is manifested with respect to the second benchmark one.

Click here to read this post out
ID: 801883; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 26, 2024, 7:34 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 10
CC:
No creative common's license
Comments: