×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.16826v1 Announce Type: new
Abstract: Sparse code multiple access (SCMA) is a promising technique for enabling massive connectivity and high spectrum efficiency in future machine-type communication networks. However, its performance crucially depends on well-designed multi-dimensional codebooks. In this paper, we propose a novel progressive codebook optimization scheme that can achieve near-optimal performance over downlink fading channels. By examining the pair-wise error probability (PEP), we first derive the symbol error rate (SER) performance of the sparse codebook in downlink channels, which is considered as the design criterion for codebook optimization. Then, the benchmark constellation group at a single resource element is optimized with a sequential quadratic programming approach. Next, we propose a constellation group reconstruction process to assign the sub-constellations in each resource element (RE) progressively. For the current RE, the assignment of the sub-constellations is designed by minimizing the error performance of the product distance of the superimposed codewords in previous REs. The design process involves both permutation and labeling of the sub-constellations in the benchmark constellation group. Simulation results show that the proposed codebooks exhibit significant performance gains over state-of-the-art codebooks in the low signal-to-noise ratio (SNR) region over various downlink fading channels.

Click here to read this post out
ID: 802036; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 26, 2024, 7:34 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: