×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.15738v1 Announce Type: cross
Abstract: Effective hospital capacity management is pivotal for enhancing patient care quality, operational efficiency, and healthcare system resilience, notably during demand spikes like those seen in the COVID-19 pandemic. However, devising optimal capacity strategies is complicated by fluctuating demand, conflicting objectives, and multifaceted practical constraints. This study presents a data-driven framework to optimize capacity management decisions within hospital systems during surge events. Two key decisions are optimized over a tactical planning horizon: allocating dedicated capacity to surge patients and transferring incoming patients between emergency departments (EDs) of hospitals to better distribute demand. The optimization models are formulated as robust mixed-integer linear programs, enabling efficient computation of optimal decisions that are robust against demand uncertainty. The models incorporate practical constraints and costs, including setup times and costs for adding surge capacity, restrictions on ED patient transfers, and relative costs of different decisions that reflect impacts on care quality and operational efficiency. The methodology is evaluated retrospectively in a hospital system during the height of the COVID-19 pandemic to demonstrate the potential impact of the recommended decisions. The results show that optimally allocating beds and transferring just 30 patients over a 63 day period around the peak, less than one transfer every two days, could have reduced the need for surge capacity in the hospital system by approximately 98%. Overall, this work introduces a practical tool to transform capacity management decision-making, enabling proactive planning and the use of data-driven recommendations to improve outcomes.

Click here to read this post out
ID: 802083; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 26, 2024, 7:34 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 10
CC:
No creative common's license
Comments: