×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2401.15911v3 Announce Type: replace-cross
Abstract: In the field of causal modeling, potential outcomes (PO) and structural causal models (SCMs) stand as the predominant frameworks. However, these frameworks face notable challenges in practically modeling counterfactuals, formalized as parameters of the joint distribution of potential outcomes. Counterfactual reasoning holds paramount importance in contemporary decision-making processes, especially in scenarios that demand personalized incentives based on the joint values of $(Y(0), Y(1))$. This paper begins with an investigation of the PO and SCM frameworks for modeling counterfactuals. Through the analysis, we identify an inherent model capacity limitation, termed as the ``degenerative counterfactual problem'', emerging from the consistency rule that is the cornerstone of both frameworks. To address this limitation, we introduce a novel \textit{distribution-consistency} assumption, and in alignment with it, we propose the Distribution-consistency Structural Causal Models (DiscoSCMs) offering enhanced capabilities to model counterfactuals. To concretely reveal the enhanced model capacity, we introduce a new identifiable causal parameter, \textit{the probability of consistency}, which holds practical significance within DiscoSCM alone, showcased with a personalized incentive example. Furthermore, we provide a comprehensive set of theoretical results about the ``Ladder of Causation'' within the DiscoSCM framework. We hope it opens new avenues for future research of counterfactual modeling, ultimately enhancing our understanding of causality and its real-world applications.

Click here to read this post out
ID: 802366; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 26, 2024, 7:35 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 10
CC:
No creative common's license
Comments: