×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.16779v1 Announce Type: new
Abstract: Image-guided navigation of catheter devices to anatomic targets within large 3D cardiac chambers and vessels is challenging in the interventional setting due to the limitations of a conventional 2D x-ray projection format. Scanning-beam digital x-ray (SBDX) is a low-dose inverse geometry x-ray fluoroscopy technology capable of real-time 3D catheter tracking. SBDX performs rapid tomosynthesis using an electronically scanned multisource x-ray tube and photon-counting detector mounted to a C-arm gantry. However, SBDX currently lacks the ability to perform volumetric computed tomography from a rotational C-arm scan. This work develops a novel volumetric CT capability for the SBDX platform, termed C-arm inverse geometry CT, suitable for rotational scans of the beating heart. The work is divided into three tasks: development of image reconstruction algorithms, implementation on the SBDX hardware, and performance assessment for the example task of 3D cardiac chamber mapping. SBDX-CT data acquisition is performed by simultaneous x-ray source scanning at 15 scan/s and C-arm rotation over a 190 degree short-scan arc in 13.4 seconds. An iterative reconstruction method was developed to accommodate fully truncated projections and data inconsistency resulting from cardiac motion during rotation. Hardware implementation included development of a C-arm angle measurement method, development of a geometric calibration method to account for non-ideal C-arm rotations, and detector response nonlinearity correction. The geometric calibration procedure mitigated artifacts from C-arm deflection during rotation. SBDX-CT image quality was evaluated in phantom studies. Feasibility of in-vivo SBDX-CT was demonstrated in a porcine model.

Click here to read this post out
ID: 802573; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 26, 2024, 7:35 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 11
CC:
No creative common's license
Comments: