×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.16228v1 Announce Type: new
Abstract: Predictable forward performance processes (PFPPs) are stochastic optimal control frameworks for an agent who controls a randomly evolving system but can only prescribe the system dynamics for a short period ahead. This is a common scenario in which a controlling agent frequently re-calibrates her model. We introduce a new class of PFPPs based on rank-dependent utility, generalizing existing models that are based on expected utility theory (EUT). We establish existence of rank-dependent PFPPs under a conditionally complete market and exogenous probability distortion functions which are updated periodically. We show that their construction reduces to solving an integral equation that generalizes the integral equation obtained under EUT in previous studies. We then propose a new approach for solving the integral equation via theory of Volterra equations. We illustrate our result in the special case of conditionally complete Black-Scholes model.

Click here to read this post out
ID: 802722; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 26, 2024, 7:35 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: