×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2306.10180v3 Announce Type: replace
Abstract: We consider scattered data approximation in samplet coordinates with $\ell_1$-regularization. The application of an $\ell_1$-regularization term enforces sparsity of the coefficients with respect to the samplet basis. Samplets are wavelet-type signed measures, which are tailored to scattered data. They provide similar properties as wavelets in terms of localization, multiresolution analysis, and data compression. By using the Riesz isometry, we embed samplets into reproducing kernel Hilbert spaces and discuss the properties of the resulting functions. We argue that the class of signals that are sparse with respect to the embedded samplet basis is considerably larger than the class of signals that are sparse with respect to the basis of kernel translates. Vice versa, every signal that is a linear combination of only a few kernel translates is sparse in samplet coordinates. Therefore, samplets enable the use of well-established multiresolution techniques on general scattered data sets.
We propose the rapid solution of the problem under consideration by combining soft-shrinkage with the semi-smooth Newton method. Leveraging on the sparse representation of kernel matrices in samplet coordinates, this approach converges faster than the fast iterative shrinkage thresholding algorithm and is feasible for large-scale data. Numerical benchmarks are presented and demonstrate the superiority of the multiresolution approach over the single-scale approach. As large-scale applications, the surface reconstruction from scattered data and the reconstruction of scattered temperature data using a dictionary of multiple kernels are considered.

Click here to read this post out
ID: 802934; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 26, 2024, 7:35 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 12
CC:
No creative common's license
Comments: