×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2312.06128v3 Announce Type: replace
Abstract: We model backreaction in AdS$_2$ JT gravity via a proposed boundary dual Sachdev-Ye-Kitaev quantum dot coupled to Dirac fermion matter and study it from the perspective of quantum entanglement and chaos. The boundary effective action accounts for the backreaction through a linear coupling of the Dirac fermions to the Gaussian-random two-body Majorana interaction term in the low-energy limit. We calculate the time evolution of the entanglement entropy between graviton and Dirac fermion fields for a separable initial state and find that it initially increases and then saturates to a finite value. Moreover, in the limit of a large number of fermions, we find a maximally entangled state between the Majorana and Dirac fields in the saturation region, implying a transition of the von Neumann algebra of observables from type I to type II. This transition in turn indicates a loss of information in the holographically dual emergent spacetime. We corroborate these observations with a detailed numerical computation of the averaged nearest-neighbor gap ratio of the boundary spectrum and provide a useful complement to quantum entanglement studies of holography.

Click here to read this post out
ID: 804569; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 27, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: