×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.17613v1 Announce Type: new
Abstract: In this work, we consider smooth unconstrained optimization problems and we deal with the class of gradient methods with momentum, i.e., descent algorithms where the search direction is defined as a linear combination of the current gradient and the preceding search direction. This family of algorithms includes nonlinear conjugate gradient methods and Polyak's heavy-ball approach, and is thus of high practical and theoretical interest in large-scale nonlinear optimization. We propose a general framework where the scalars of the linear combination defining the search direction are computed simultaneously by minimizing the approximate quadratic model in the 2 dimensional subspace. This strategy allows us to define a class of gradient methods with momentum enjoying global convergence guarantees and an optimal worst-case complexity bound in the nonconvex setting. Differently than all related works in the literature, the convergence conditions are stated in terms of the Hessian matrix of the bi-dimensional quadratic model. To the best of our knowledge, these results are novel to the literature. Moreover, extensive computational experiments show that the gradient methods with momentum here presented outperform classical conjugate gradient methods and are (at least) competitive with the state-of-art method for unconstrained optimization, i.e, L-BFGS method.

Click here to read this post out
ID: 804709; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 27, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 11
CC:
No creative common's license
Comments: