×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2310.00226v2 Announce Type: replace
Abstract: It is well known since 1960s that by exploring the tensor product structure of the discrete Laplacian on Cartesian meshes, one can develop a simple direct Poisson solver with an $\mathcal O(N^{\frac{d+1}d})$ complexity in d-dimension, where N is the number of the total unknowns. The GPU acceleration of numerically solving PDEs has been explored successfully around fifteen years ago and become more and more popular in the past decade, driven by significant advancement in both hardware and software technologies, especially in the recent few years. We present in this paper a simple but extremely fast MATLAB implementation on a modern GPU, which can be easily reproduced, for solving 3D Poisson type equations using a spectral-element method. In particular, it costs less than one second on a Nvidia A100 for solving a Poisson equation with one billion degree of freedoms. We also present applications of this fast solver to solve a linear (time-independent) Schr\"odinger equation and a nonlinear (time-dependent) Cahn-Hilliard equation.

Click here to read this post out
ID: 804866; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 27, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 15
CC:
No creative common's license
Comments: