×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.12444v2 Announce Type: replace-cross
Abstract: Pattern dynamics on curved surfaces are ubiquitous. Although the effect of surface topography on pattern dynamics has gained much interest, there is a limited understanding of the roles of surface geometry and topology in pattern dynamics. Recently, we reported that a static pattern on a flat plane can become a propagating pattern on a curved surface [Nishide and Ishihara, Phys. Rev. Lett. 2022]. By examining reaction-diffusion equations on axisymmetric surfaces, certain conditions for the onset of pattern propagation were determined. However, this analysis was limited by the assumption that the pattern propagates at a constant speed. Here, we investigate the pattern propagation driven by surface curvature using weakly nonlinear analysis, which enables a more comprehensive approach to the aforementioned problem. The analysis reveals consistent conditions of the pattern propagation similar to our previous results, and further predicts that rich dynamics other than pattern propagation, such as periodic and chaotic behaviors, can arise depending on the surface geometry. This study provides a new perspective on the relationship between surfaces and pattern dynamics and a basis for controlling pattern dynamics on surfaces.

Click here to read this post out
ID: 805136; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 27, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 10
CC:
No creative common's license
Comments: