×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2206.04133v4 Announce Type: replace
Abstract: The effects of treatments may differ between persons with different characteristics. Addressing such treatment heterogeneity is crucial to investigate whether patients with specific characteristics are likely to benefit from a new treatment. The current paper presents a novel Bayesian method for superiority decision-making in the context of randomized controlled trials with multivariate binary responses and heterogeneous treatment effects. The framework is based on three elements: a) Bayesian multivariate logistic regression analysis with a P\'olya-Gamma expansion; b) a transformation procedure to transfer obtained regression coefficients to a more intuitive multivariate probability scale (i.e., success probabilities and the differences between them); and c) a compatible decision procedure for treatment comparison with prespecified decision error rates. Procedures for a priori sample size estimation under a non-informative prior distribution are included. A numerical evaluation demonstrated that decisions based on a priori sample size estimation resulted in anticipated error rates among the trial population as well as subpopulations. Further, average and conditional treatment effect parameters could be estimated unbiasedly when the sample was large enough. Illustration with the International Stroke Trial dataset revealed a trend towards heterogeneous effects among stroke patients: Something that would have remained undetected when analyses were limited to average treatment effects.

Click here to read this post out
ID: 805296; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 27, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 12
CC:
No creative common's license
Comments: